Synbiotic intervention of *Bifidobacterium lactis* and resistant starch protects against colorectal cancer development in rats

Richard K. Le Leu¹, Ying Hu, Ian L. Brown, Richard J. Woodman¹ and Graeme P. Young

Flinders Centre for Cancer Prevention and Control Flinders University and ¹Discipline of General Practice, Flinders University, South Australia 5042, Australia

To whom correspondence should be addressed. Tel: +618 8204 5170; Fax: +618 8204 3943; Email: richard.leleu@flinders.edu.au

This study evaluated the effect of a probiotic bacteria *Bifidobacterium lactis*, the carbohydrate ‘resistant starch’ (RS) and their combination (synbiotic), on their ability to protect against colorectal cancer (CRC). *Bifidobacterium lactis* has been shown previously to utilize RS as a substrate and up-regulate the acute apoptotic response to a carcinogen in the colon [Le Leu et al. (2005) J. Nutr., 135, 996–1001]. Sprague-Dawley rats were divided into six equal groups and fed semi-purified diets for 30 weeks. Colonic neoplasms were induced by 2 weekly injections of azoxymethane (15 mg/kg body wt). The experimental groups were as follows: control—no added dietary fibre or RS; RS in two forms—Hi-maize 958 or Hi-maize 260; *B. lactis* (lyophilized)—added to control and RS diets (six treatment groups in all). Rats fed RS in combination with *B. lactis* showed significantly lowered incidence and multiplicity of colonic neoplasms (P < 0.01) by >50% compared with the control group. There was a trend for protection by RS alone (P = 0.07), whereas no protection against cancer was seen in the group supplemented with only *B. lactis*. Fermentation events [short-chain fatty acid (SCFA), pH] were altered by the inclusion of RS into the diet, whereas the inclusion of *B. lactis* into the diet had no significant effect on the fermentation parameters. The synbiotic combination of RS and *B. lactis* significantly protects against the development of CRC in the rat-azoxymethane model. Synbiotic combination of prebiotic and probiotic seems likely to be a superior preventive strategy to prebiotic alone.

Introduction

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in affluent countries and is a leading cause of cancer-related mortality in the USA and Australia (1,2). Evidence from epidemiological and experimental studies implies that diet is an important environmental factor in the aetiology of CRC, implying that CRC is potentially preventable (3). The colonic microbiota has been identified as being capable of influencing gastrointestinal diseases and disorders including that of CRC (4-6). There exists a potential role for foods that contain probiotics (live microbial food ingredients that may be beneficial to health, such as lactobacilli or bifidobacteria) and/or prebiotics (non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth or activity of one or a limited number of resident colonic bacteria) to change the colonic microbiota in a way that might prevent diseases such as CRC.

The precise mechanisms by which probiotics exert their antimourigencic influence are uncertain but might involve modifying gut pH and increasing the net production rate of short-chain fatty acid (SCFA) (mainly acetate, propionate and butyrate) (7), antagonizing pathogens through production of antimicrobial and antibacterial compounds (such as bacteriocins, cytokines and butyrate) and stimulating immunomodulatory cells (8) or competition with pathogens for available nutrients, receptors and growth factors (9). Prebiotics may exert their cancer-protective effects via modulation of fermentative events possibly by increasing SCFA production or by altering gut microbiota towards a more beneficial composition (10) or by modifying important biological consequences related to cancer development such as apoptosis or cell proliferation (11,12).

It has been suggested that a combination of a probiotic and a prebiotic, termed synbiotics, might be more active than either a probiotic or prebiotic alone (13) in preventing CRC. In a human intervention study, several CRC biomarkers were shown to be altered favourably by a probiotic intervention (14). There are also several reports in experimental animals whereby a synbiotic combination showed biological and anticancer effects beyond those of the individual components (5,15,16). Although each of these studies suggested several mechanisms of action by which synbiotics might be protective, there is little direct evidence to implicate specific effects on biological events of relevance to oncogenesis.

In a recent study, we have shown that the combination of the prebiotic ‘resistant starch’ (RS) and the probiotic ‘*Bifidobacterium lactis*’, a probiotic that specifically utilizes RS as a substrate for fermentation (17,18), can significantly stimulate the acute apoptotic response to a genotoxic carcinogen (AARGC) in the rat colon, measured 6 h after carcinogen exposure (19). AARGC might regulate mutational load in the colon and eliminate DNA-damaged cells that might otherwise progress to malignancy, thereby exerting a protective effect at the early stages in the onset of cancer (20,21).

The primary objective of the current study was to determine whether the synbiotic combination of RS and *B. lactis* can protect against azoxymethane (AOM)-induced CRC in rodents. It was our hypothesis that the synbiotic combination of RS with *B. lactis* would be more protective than either the RS or the *B. lactis* alone because the synbiotic combination of these agents facilitates the apoptotic response to DNA damage by a cancer initiator (AOM) in the colon of rats (19). Two forms of high-amylase maize starches (HAMS) with similar RS content were used in the current study, namely a native HAMS (which is a commercially rich source of dietary fibre and RS, with an amylose content of 85%) and a hydrothermically (heat–moisture)-treated native HAMS. Hydrothermal processing is a means of significantly increasing the dietary fibre content of HAMS (22). We examined two forms of HAMS to determine whether the extra variable of the dietary fibre content played any role in modulating the impact of RS on development of AOM-induced colorectal tumours in the rat model.

Materials and methods

Animals and diets

A total of 180 male Sprague–Dawley rats, 5 weeks of age, were obtained from the Animal Resource Centre, Perth, Western Australia. Animals were divided randomly into six experimental groups and housed two or three per plastic cage in an animal holding room under controlled conditions of 22 ± 2°C (SD), 80 ± 10% humidity and 12 h light/dark cycle. Animals were given free access to water and weighed weekly throughout the study.

The diets were modified forms of the AIN-76a standard for purified diets for rats and mice. Two forms of HAMS were used in the study as the source of RS, namely a native HAMS (Hi-maize® 958, which is a commercially rich source of dietary fibre and RS, with an amylose content of 85%) and a hydrothermically (heat–moisture)-treated native HAMS (Hi-maize® 260). The hydrothermal process was conducted using a native HAMS under conditions where the starch had a moisture content of 25% and it was heated to 125°C for 120 min (22). The total dietary fibre (TDF) and RS values were determined on a dry weight basis for the two different amylose maize starches by Association of Official Analytical Chemists (AOAC) Method 991.43 and AOAC 2002.02.
Table I. Composition of experimental diets (grams/100 g diet)\(^{b,c}\)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control</th>
<th>Bif</th>
<th>RS(A)</th>
<th>RS(B)</th>
<th>RS(A) + Bif</th>
<th>RS(B) + Bif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Corn starch</td>
<td>46.15</td>
<td>46.15</td>
<td>36.15</td>
<td>36.15</td>
<td>36.15</td>
<td>36.15</td>
</tr>
<tr>
<td>Hi-maize® 958°</td>
<td>—</td>
<td>—</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi-maize® 260°</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn oil</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>Sucrose</td>
<td>10.95</td>
<td>9.95</td>
<td>10.95</td>
<td>10.95</td>
<td>9.95</td>
<td>9.95</td>
</tr>
<tr>
<td>Bifidobacterium lactis (^a)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr-methionine</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Choline</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>AIN-76 mineral mix</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>AIN-76 vitamin mix</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

\(^a\) High-amylose maize starch used as source of RS.
\(^b\) *Bifidobacterium* lactis in form of lyophilized culture (1 × 10^11 c.f.u./g).
\(^c\) The TDF and RS values were determined on a dry weight basis for the two different amylose starches by AOAC Method 991.43 and AOAC 2002.02, respectively. The values are as follows: Hi-maize 958 (TDF = 30; RS = 50), Hi-maize 260 (TDF = 60; RS = 46).

respectively. The values are as follows: Hi-maize 958 (TDF = 30; RS = 50), Hi-maize 260 (TDF = 60; RS = 46).

Each group of animals was fed an experimental diet based on the control diet (Table I). Choline, methionine, minerals and vitamins were added as previously (19). The first group ‘control’ consumed a diet containing no added fibre or RS. The second group ‘Bif’ consumed the same diet as control with 1% lyophilized culture (1 × 10^11 c.f.u./g) of *B. lactis*. The third group ‘RS(A)’ was fed Hi-maize® 958 at a level of 100 g/kg diet. The fourth group ‘RS(B)’ was fed Hi-maize® 260 at a level of 100 g/kg diet. The fifth group ‘RS(A) + Bif’ was fed Hi-maize® 958 at a level of 100 g/kg diet + 1% lyophilized culture (1 × 10^11 c.f.u./g) of *B. lactis*. The sixth group ‘RS(B) + Bif’ was fed Hi-maize® 260 at a level of 100 g/kg diet + 1% lyophilized culture (1 × 10^11 c.f.u./g) of *B. lactis*.

The different types of RSs were supplied by National Starch and Food Innovation, Bridgewater, NJ, USA HAMS was added to the diets at the expense of sucrose. Lyophilized cultures of *B. lactis* were purchased from DSM Food Specialties (Sydney, Australia) and added to the diets at the expense of sucrose.

Experimental procedure

After 4 weeks on experimental diets, each rat received subcutaneous injections of azoxymethane (15 mg/kg body wt; Sigma Chemical Co., St. Louis, MO) once weekly for 2 weeks and then maintained on their dietary regimen until termination of the study at 26 weeks after the second azoxymethane injection. The rats in each group were weighed once weekly. As scheduled, all rats were killed by CO2 asphyxiation. After laparotomy, the entire stomach, small intestine and large intestine were resected. They were opened longitudinally and 3 min with haematoxylin. PCNA-positive cells were identified in 20 randomly chosen intact crypts by cell shrinkage, presence of condensed chromatin and sharply delineated cell borders surrounded with a clear halo as reported previously (23).

To assess the proliferative activity and the distribution of proliferating cells in the colonic crypts, the proliferating cell nuclear antigen (PCNA) was performed using standard immunohistochemical procedures (23). Briefly, deparaffinized sections were rehydrated in a graded series of ethanol from 100 to 50% and then to distilled water. The primary mouse monoclonal antibody (PC-10, Santa Cruz, CA, USA) was placed on the slides (1/500 dilution) and incubated overnight at room temperature. A level 2 Ultra Streptavidin Detection System (Signet Laboratories, CA, USA) was used utilizing biotinylated goat anti-mouse as the secondary antibody. The slides were counterstained for 3 min with haematoxylin. PCNA-positive cells were identified in 20 randomly chosen intact crypts. An independent observer (JW) who was blinded to the treatment groups by random coding of the slides determined the quantification of proliferative cells and apoptotic cells.

SCFA analysis

SCFA including acetate, propionate and butyrate, as well as branched chain fatty acids isobutyrate, isovaleric and valeric, were detected in the caecal, colon contents and faeces of rats as described previously (25).

Statistical analysis

The effect of the diets on tumour incidence and tumour counts were assessed using binomial logistic and Poisson regression models, respectively. All tumour analysis was carried out using Stata version 10.1 (StataCorp, Texas, USA). The effect of diet on SCFA, apoptosis, crypt height and cell proliferation was analysed using one-way analysis of variance and the Sidak post hoc test (SPSS version 17). The criterion for statistical significance was set at P < 0.05 for each endpoint.

Results

No differences between the two RS groups [i.e. RS(A) and RS(B)] were observed in each of the outcomes; therefore, the two RS groups were combined in order to increase the power to test our main study hypothesis—that the synbiotic combination of RS with *B. lactis* would be more protective than either the RS or *B. lactis* alone.

Animals

There were no significant variations in final mean bodyweights of the different treatment groups. Data not shown.

Colonic tumours

The effects of the experimental diets on neoplasm incidence (proportion of rats who develop neoplasia), number of neoplasms per colon and type of neoplasm (adenoma or cancer) in the colon are shown in Table II. The synbiotic diet (RS + Bif) significantly reduced the incidence of neoplasms in the colon (18.3%) compared with the control group (53.3%) (P < 0.001). There was also a trend towards reduction of neoplasm incidence with RS (33.3%) (P = 0.07). No protection was seen for the probiotic alone on any measure of colonic neoplasms.

When the incidence of adenomas and cancers were analysed separately, there was a significant reduction in the incidence of adenomas in the synbiotic diet group (5.0%) compared with the control group (23.3%) (P = 0.02) and a borderline reduction in the incidence of cancers among the synbiotic diet group (13.3%) versus control group (30.0%).

A similar pattern of protection was seen in regard to colonic neoplasm multiplicity. Significant protection against the number of neoplasms per rat colon was observed for the synbiotic group (0.2 ± 0.4) versus the control group (0.7 ± 0.8) (P = 0.001). The number of cancers per rat colon was also reduced (0.15 ± 0.40) compared with the control group (0.43 ± 0.8) (P = 0.01) and number of adenomas per rat colon was also reduced with the synbiotic (0.03 ± 0.18) in comparison with the control group (0.23 ± 0.19) (P = 0.02).

SCFA levels

SCFA concentrations (micromoles/gram) in the caecum and proximal and distal colon are shown in Table III. Overall, SCFA concentrations embedded sections (5 mm) were stained with haematoxylin and evaluated under a light microscope for apoptotic cells. Apoptotic cells were identified in 20 randomly chosen intact crypts by cell shrinkage, presence of condensed chromatin and sharply delineated cell borders surrounded with a clear halo as reported previously (23).

"Synbiotic protects against CRC in rats"
were highest in the caecum followed by the proximal colon and then the distal colon. RS supplementation had the greatest effect on SCFA concentrations. The probiotic alone did not significantly influence SCFA concentrations.

In the caecum, total SCFA concentrations were significantly higher in the RS group (82.3 ± 28.8) (P = 0.01) and RS + Bif group (80.1 ± 34.6) (P = 0.03) compared with the control group (61.6 ± 20.5). Caecal acetate concentrations were not significantly altered by the different dietary groups. Propionate concentration was significantly higher in the RS group (21.5 ± 8.7) (P = 0.001) and RS + Bif group (20.5 ± 8.8) (P = 0.005) compared with the control group (14.6 ± 5.0). Butyrate concentration was significantly increased only in the RS group (15.7 ± 7.6) (P = 0.001) compared with the control group.

In the proximal colon, total SCFA concentration was significantly higher in the RS group (64.9 ± 23.7) (P = 0.02) and RS + Bif group (66.4 ± 23.5) (P = 0.007) compared with the control group (46.0 ± 18.4). Acetate concentration was increased in the RS + Bif group (42.9 ± 17.6) (P = 0.009) compared with that of the control group (28.6 ± 13.2) (P < 0.001). Propionate concentration was increased in the RS group (16.4 ± 6.2) (P = 0.005) versus control (11.5 ± 3.9). There was a significant increase in butyrate concentration in the RS group (9.3 ± 4.5) (P = 0.01) and RS + Bif group (9.1 ± 4.9) (P = 0.02) compared with the control group.

In the distal colon, the total SCFA concentration was significantly higher in the RS group (60.8 ± 24.0) (P = 0.001) and RS + Bif group (56.8 ± 23.2) (P = 0.001) compared with the control group (29.2 ± 19.5). Acetate concentration was also increased in the RS group (34.9 ± 14.2) (P = 0.001) and RS + Bif group (34.0 ± 15.1) (P = 0.001) compared with the control group (17.4 ± 13.0). Propionate concentration was highest in the RS group (15.7 ± 7.6) (P = 0.001) and RS + Bif group (13.9 ± 8.0) (P = 0.002) compared with the control group (7.7 ± 5.1). Butyrate concentration was highest in the RS group (9.8 ± 5.9) (P = 0.001) and RS + Bif group (9.0 ± 5.2) (P = 0.003) compared with the control group (4.1 ± 2.1).

Effects of diet on crypt height, cell proliferation and spontaneous apoptosis in distal colon

A significant increase in crypt column height (cells per crypt column height) was observed in the RS group (33.5 ± 1.2) (P = 0.003) and RS + Bif group (33.3 ± 1.4) (P = 0.02) in comparison with the control group (31.9 ± 1.3) (Figure 1A).

Cell proliferation was evaluated by assessing the PCNA staining in normal appearing distal colonic crypts measured 26 weeks after the
A plausible explanation of why the synbiotic combination of RS and \textit{B. lactis} showed the greatest protection against CRC is through up-regulation of the apoptosis at the time of cancer initiation by the carcinogen AOM (19). This supports the importance of regulating apoptosis for cancer prevention. However, why apoptosis was up-regulated with the synbiotic remains unclear. A possible explanation may be through an interaction of the immunomodulating properties of probiotic bacteria and butyrate produced via fermentation of RS (26). Cytokines such as tumour necrosis factor (TNF)-\(\alpha\) are capable of inducing apoptosis (27). Although cytokine levels were not measured in the present study, other studies have shown that cytokine levels such as TNF-\(\alpha\), interferon-\(\gamma\) and interleukin-10 may be increased with probiotic supplementation (28).

In our previous study, the acute apoptotic response to the carcinogen, AOM (19), exerted a pro-apoptotic action in response to the carcinogen, AOM (19). The unanswered question from that experiment was does this up-regulation of apoptosis at the time of cancer initiation translate to increased protection against CRC? The results of the present study show that the synbiotic combination of RS and \textit{B. lactis} protects against CRC in rats treated with the carcinogen AOM, hence supporting the value of a synbiotic combination.

A trend towards protection against CRC was seen with the RS alone in the present study; however, it was when RS was combined with \textit{B. lactis} that the strongest protection was observed. Interestingly, no significant differences were observed between the two RS forms in terms of AOM-induced colonic neoplasms or SCFA concentrations although the two HAMS differed markedly in their dietary fibre content. The lack of difference in the physiological results from the two different types of HAMS that had similar RS contents but markedly different TDF contents indicates that in experiments focusing on RS it is important to ensure that results are interpreted in relation to the RS source. The RS types we used in the present study were a native source of RS (23,41,42) and also a type-3 RS (retrograded starches, formed when starchy foods are cooked and cooled) (43). A mode of action of RS is thought to be through its effects on fermentation and SCFA concentration (10). Butyrate is associated with induction of differentiation, suppression of proliferation and enhanced apoptosis \textit{in vitro} (44–47) and may be associated with enhanced apoptosis \textit{in vivo} (12,25,43). Increased luminal concentrations have been directly linked to protection in the rodent model (48). The present data show that consumption of RS increases SCFA production including butyrate throughout the colon, which is independent of the dietary fibre content of the RS source. No effect on butyrate production or CRC protection was observed with \textit{B. lactis} alone (i.e. not in combination with RS).

Discussion

The present study is a follow-on from our previous rodent study that demonstrated that the synbiotic combination of RS and \textit{B. lactis} exerted a pro-apoptotic action in response to the carcinogen, AOM (19). In our previous study, the acute apoptotic response to the carcinogen AOM (AARGC), measured in the colon 6 h after exposure to the carcinogen, was not affected by either probiotic or the prebiotic alone (19). The unanswered question from that study was does this up-regulation of apoptosis at the time of cancer initiation translate to increased protection against CRC? The results of the present study show that the synbiotic combination of RS and \textit{B. lactis} protects against CRC in rats treated with the carcinogen AOM, hence supporting the value of a synbiotic combination.
Our results showed that colonic cell proliferation (as measured by PCNA-positive cells) was reduced in the rats fed the RS-containing diets. Increased cell proliferation may enhance the risk of mutations, which can lead to an increased risk of developing CRC (49). Similar reductions in cell proliferation have also been observed in rats fed fermentable substrates like RS (23,50) and the carbohydrate oligofructose (51). It is likely that the increased SCFA resulting from fermentation of starch in the colon contributed to the observed effects on colonic epithelial proliferation. Furthermore, colonic crypt column height appears to be dependent on the presence of a fermentative substrate, as crypt height was significantly lower in the rats fed a diet deprived of RS. This effect is consistent with our previous studies (52) and that of others (53,54). Fermentative production of SCFA is considered to have a trophic effect on the colonic epithelium (10).

In conclusion, this study has shown that the synbiotic combination of RS and B. lactis significantly protected against the development of CRC in the rat-AOM model beyond the benefit of either agent alone. These results indicate the need to further explore the potential role for the combination of RS and B. lactis as a chemopreventive agent for CRC.

Funding
National Starch Food Innovation, New Jersey, USA; National Health and Medical Research Council of Australia (grant ID 535079).

Acknowledgements
We thank Jean Winter for histological analysis and animal sample collections.

Conflict of Interest Statement: R.K.L. and G.P.Y. declare that they are recipients of a research grant from National Starch and Food Innovation, but otherwise all authors declare no other potential conflicts of interest.

References

Received May 21, 2009; revised July 8, 2009; accepted July 30, 2009

Synbiotic protects against CRC in rats